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Transputer Implementation of
the TRACE Model of Speech Recognition:

Final Report
Jeffrey L. Elman

Paul S. Smith
Mark Dolson

Center for Research in Language, University of California, San Diego

ABSTRACT

0 • We describe the accomplishments of the five-year project to develop an extendedo ~ version of the TRACE model of speech recognition and to port it to a Transputer
S• platform. We begin with an overview of the project. We then describe the TRACE

__ model. TRACE is an artificial neural network which attempts to model the pro-S 2 cessing of speech from acoustic input to word extraction, in a manner consistent
with what is known of human perceptual abilities. Following that, we discuss the

__• work done to extend and develop the model in the direction of real-time perfor-
S.> mance with an extended phonemic inventory. This includes algorithm changes to
ý,. TRACE, software for managing the Transputer processors, a new acoustic/phonet-

ic7 ic front-end, debugging and testing tools, and graphics visualization software.
,'I-

I. PROJECT OVERVIEW nents:

1. Extension of front-end.
This report work done under con-

tract to Army Avionics, Ft. Monmouth The initial version of TRACE had
(contract #DAAB07-87-C-H027). The a limited front-end and was able to recog-
goal of the project involved development nize only 15 phonemes. Most current
of a psychological plausible model of phoneme-based systems rely on up to 60
speech recognition which would operate phonemes; therefore, a necessary exten-
in close to real-time. The model is based sion to TRACE was the development of a
on a neural network architecture devel- full-blown set of phoneme detectors.
oped by Jeffrey Elman and James Mc-
Clelland. By utilizing multiple sources of This phase of the work involved a
information in a parallel and interactive number of sub-components:
system, the model is robust in the face of (a) recording, analysis, and marking of --

a number of sources of variation, includ- speech database. In order to control fully
ing ambient noise and coarticulatory ef- the parameters of interest to us, it was
fects. necessary to develop an in-house data- •

The project had 4 major compo- base which could be used for training and
./ or92 8 2 6 009 DTICQU/rr-INPGED



Elman, Smith, & Dolson The TRACE Model: A Transputer Implementation

testing of the front-end. benefits of parallel processing, develop-
(b) Identification of the phoneme inventory. ment tools are for the most part non-ex-
There is no single agreed-upon set of istent or in an immature state. In-house
phonemes used in the industry. The tools were therefore developed. These
closest to a standard is the so-called tools were used to analyze and debug
DARPAbet. This served as our initial processes running in a multi-processor
candidate set, and was modified in re- environment, as well as to assess timing
sponse to our own testing. and performance.

(3) Acoustic pre-processing. Prior to be- 2. Transputer operating system. A second
ing fed to the neural network, decisions effort was undertaken to develop soft-
needed to be made about how the digi- ware which would provide services typi-
tized speech signal would be transformed cally offered by an operating system: con-
(e.g., by filtering, log-scaling, normaliza- trol over process scheduling; memory
tion). management; I/O streams; error-detec-

tion.
(4) Neural network phoneme processors.

We experimented with a variety of neu- 3. CAC-QUAD testing. Once the QUAD

ral network architectures for carrying boards were developed and made avail-

out the phoneme recognition, including able, a third software project was initiat-

standard feed-forward networks, recur- ed. This effort involved creation of soft-

rent networks, and time-delay neural ware tools for testing and evaluating the
networks (TDNNs). We ultimately set- QUAD boards provided by the Army.
tied on a variant of the TDNN: the pair-
wise discriminant TDNN. 3. Transputer-based TRACE Implemen-
(5) Testing and evaluation. The phoneme tation.
estimation techniques provided by the TRACE was initially developed
front-end were tested extensively. Tests without regard for how it might be imple-
were carried out on (a) the rn-house data- mented on a parallel platform. In order
base, (b) the TIMtT database, and (c) a to port the system to a parallel and con-
custom database provided by Army Avi- current environment, fundamental
onic (and recorded in-house), changes were required in the software

design. TRACE was essentially re-writ-

2. Transputer development software. ten from the ground up.

At the time the project was begun, The transputer-based version of

there was very little development soft- TRACE is optimized in order to take ad-
ware available for the Transputer. In vantage of the hardware environment,
fact, the UCSD group ultimately played and specifically, to utilize both the high-
a significant role in the off-site develop- speed inter-processor serial communica-
ment (by private vendors) of C and Sun- tion links and the shared memory.
based software. Our group was one of 4. Graphics and visualization software.
the first major users of the Transputer A final software effort was direct-
and was thus able to influence and assist ed at developing graphic tools in order to
in the development of products. visualize the performance of the model.
1. Debugging. Although there is wide- Given the concurrent activity of a very
spread recognition of the computational large number of (simulated) nodes in the

"-2-



Elman, Smith, & Dolson The TRACE Model: A Transputer Implementation

network, graphics visualization is a crit- during training tend to derail the sys-
ical tool for localizing problems and ana- tem. We have experimented with sever-
lyzing performance. Tools were also cre- al solutions to this problem but are not
ated in order to visualize the speech data satisfied it has been solved. Thus, deal-
so that it could be marked and edited. ing with durational differences remains

PERFORMANCE and RESULTS a significant goal for any future develop-
ment.

Each of the sections below con-
tains a detailed report of the results of The remainder of this report de-
the specific sub-components of the scribes the project in greater detail Sec-
project. Software deliverables have sep-
arately been conveyed to Army Avionics tion for the system. Sections mI de-
at the time of the August, 1991 site visit, scribes the transputer-specific software,

and section IV describes the TRACE-spe-
As of this date, TRACE now exists cific software; this section is in turn bro-

as a functioning system. Equivalent im- ken down into a section on the acoustic/
plementations exist for both the Sun phonetic front-end and a section on the
workstation (SPARC) and for the Army- phoneme and word processing. Section V
based transputer boards, describes the graphics visualization soft-

TRACE has been trained to be a ware that was developed for the project.
single-speaker system. Performance in
single-word mode has not been measured 11. TRACE MODEL
quantitatively (because our goal has
been continuous speech recognition) but It is a curious paradox that some
is very good. TRACE also shows some ro- of the tasks which humans carry out
bustness in the face of speech from users with the least conscious awareness and
whose speech is novel, with the greatest facility are precisely

As a phoneme recognizer, TRAC- those tasks which seem to be the most

E's performance is very good. It is diffi- complex and have been most resistant to

cult to compare performance with other machine-based implementation. Speech

systems, since recording conditions and recognition and language understanding
tphonemes differ considerably are particularly striking in this regard.

across systems. However, it is our im- Human listeners have little problem un-

pression that TRACE's performance derstanding language, even under cir-

ranks near the top of any reported sys- cumstances which might be considered

tem. to be adverse. No machine-based recog-

In continuous mode, TRACE's per-formance on the Army command list is 1The treatment ad'time in TRACE is not entirely
fglvaa ble . SntheArmyomeutancehois satisfactory The reduplication of connections ishighly variable. Some utterances are hardly elegant the many tokens (of features, pho-
recognized perfectly-, other utterances nemes, and words) are not bound together in any
are problematic and are only partially way by units which stand for types independent
recognized. We have discovered that the of their instantiation. Another, more satisfacto-
current architecture is overly brittle in ry, approach to dealing with sequential inputs is
the face of differences in duration; thus, described in Elman (1989; 1990).
utterances which contain words whose
duration differs significantly from that
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nition system yet developed comes close decoupled from its contents.
to exhibiting an equivalent behavior. All of these characteristics, it will

The fact that the only physical be observed, are true of the von Neu-
system which is known to have solved mann machine. They are characteristics
the speech understanding problem is the which have led to demonstrable success
human brain suggests that there may be in many areas of computation. What is
aspects to brain-style computation which wrong with such a model?
are particularly important for success in It is not at first obvious that the
this task. This insight, of course, is what von Neumann/brain metaphor is in fact
has prompted the recent revolution in wrong; or, even if it is, that it matters
neural computation, giving rise to what much. The problem becomes apparent
is variously called connectionism, artifi- only when one takes the theorizing seri-
cial neural network modeling. The cur- ously enough to try to build a system on
rent project has involved applying a neu- it. Then the failures are readily appar-
ral network architecture to the problem ent. The clearest example of this comes
of speech recognition; this architecture is from the field of speech recognition.
called the TRACE model. Here a variety of approaches have been

tried, and many of them (e.g., Hearsay,
Previous approaches HWIM) have attempted to bring findings

from linguistics and psychology to bear
Most attempts at understanding on the goal of getting computers to athow humans process and produce lan- least recognize (if not understand) hu-

guage have taken the standard digital lesrconz(intudrta)h-
compuaer avestak the setandarordo the man speech. Such attempts have, in gen-
computer as the metaphor for how the eral, been quite disappointing. In the
brain works. The metaphor is not always end, the most successful systems--from
explicitly acknowledged, but is manifest- the viewpoint of giving real-time perfor-
ed in several important ways: mance in a limited but well-defined do-
* It is often assumed that logical main-have been those that eschew psy-
functions are confined to "boxes", which chological or linguistic considerations.
are connected by arrows indicating a Rather than attempting to understand
restricted flow of information. how it is that humans accomplish the

* Information processing is subject to a problem of speech recognition, and repli-
"digital flow of information", i.e., a cating that process in silicon, these ap-
problem-solving strategy consisting of proaches adopt a brute-force stance.
hypothesize, test, and branch. Only a While apparently expedient, this
single hypothesis is considered at a given approach is not without its price. It leads
moment in time. to performance which is highly con-

* Memory is conceived of as essentially strained. Such systems typically work
passive. Information is stored in well in limited environments, in which
modules on a random basis. Efficient there are a small number of speakers, us-
retrieval of information may be ing a limited vocabulary with low-
facilitated by some clever organizing branching syntax, and in low noise. In
scheme (e.g., alphabetic, frequency of the long-term, then, one can argue that
use, semantic or phonological features) such expediency leads to a poor solution.
but ultimately the access of memory is The TRACE Model
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The TRACE Model (Elman & Mc- in speech. The same sound may occur
Clelland, 1984; 1986; McClelland & El- many times in an utterance, and it is im-
man, 1986) was developed in an attempt portant to bind the processing of that
to understand a number of specific prob- sound to the moment in time in which it
lems in speech perception. We first de- occurs to preserve independence of the
scribe that model, with additional exten- processes which are time-bound, while
sions, and then in the next section report allowing for the interdependence which
the results of selected simulations of the arises when one portion of an utterance
model. sheds light on the identity of another.

Description. TRACE identifies We accomplish this by represent-
three levels of organization: the feature ing time as a series of networks, each
level, the phoneme level, and the word identical and resembling what is
level. Proceasing is carried out within sketched above, but each responsible for
the model over a large number of very processing a given portion of the utter-
simple (neuron-like) processing elements ance These networks constitute an active
we call nodes. Nodes can be thought of as memory framework there is no real dis-
hypothesis detectors; there are feature tinction between short-term memory and
nodes, phoneme nodes, and words nodes. the basic mechanisms of perception in
Nodes have associated with them a nu- which network is receiving the current
meric value that represents their activa- input; as time progresses, input is direct-
tion level; this value changes over time ed toward successive networks called
and indicates the relative strength of the TRACEs, because they provide a TRACE
hypothesis represented by a given node. of the recent past.

Connections. Nodes are connected to one Processing. Processing begins
another in non-arbitrary ways which with the TRACE networks quiescent.
represent mutual compatibility or in- When speech comes in, it is directed to-
compatibility of their hypotheses. Nodes ward the feature nodes in the first
whose concepts are mutually consistent TRACE. These become activated to the
(e.g., that the word "pan" contains the extent that the features they stand for
phoneme /p/) have excitatory connec- are found in the input. As time progress-
tions. Those nodes whose concepts are es, the input is directed toward later net-
inconsistent (e.g., that the phonemes /p/ works. (After some period of time, when
and /a/ are simultaneously present in the the very early part of the utterance has
input) have inhibitory connections. been completely processed and its inter-
These connections, in addition to being pretation cannot change, the first net-
either excitatory or inhibitory, are works are "re-used".)
weighted with numeric values (multipli- In the original version of TRACE,
ers) which indicate the extent of (in)com- feature nodes were arranged in groups of
patibility. eight nodes; each group was responsible

Time: The TRACE. So far, what for detecting a certain feature, and nodes
has been described is a network which within a group had different ranges of
allows us to represent words, phonemes, sensitivity to the feature (from strongly
and features, as well as for the relation- present to strongly absent). In the new-
ships between these different units. er version, this layer has been absorbed
Time is an important additional variable by a Time Delay Neural Network

-5-
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(TDNN) which takes (filtered and pa- tended to deal with the full range of pho-
rameterized) digitized speech as input, nemes in English.
and yields phoneme estimates directly as In the remaining sections we de-
its output. Feature processing is thus scribe the steps necessary to implement
subsumed within the hidden layers of the model as a production system. Sec-
the TDNNs. The TDNN output then ac- tion HI describes the software develop-
tivates the phoneme nodes in the appro- ment which was oriented primarily to-
priate TRACEs. ward the novel hardware environment

Within a TRACE, phoneme nodes that was developed for this project. Sec-
have inhibitory connections to each oth- tion IV describes the software effort spe-
er; they also have excitatory connections cific to extending TRACE itself; this in-
to word nodes. Word nodes occupy the cludes both the neural network acoustic/
TRACEs corresponding to the time at phonetic subsystem as well as the pho-
which they begin. Phoneme nodes excite neme/word processors. Finally, Section
word nodes which contain them in that V describes the graphics visualization
TRACE position. Thus, in a given software that was developed to support
TRACE, a /pf node excites the word node the project.
for -pan" (which, since it begins in that
TRACE, also is located in the same
TRACE); it also excites the word node for I. TRANSPUTER DEVELOPMENT
"nap" (which is located in a prior TRACE, SOFTWARE
since the word itself must have begun A suite of development tools have
earlier in time). Following the rule that been created for use on the transputer
inconsistent concepts compete with each platform. These fall into several catego-
other, word nodes in a TRACE are con- ries: (a) debugging, (b) compiler, (c) o/s
nected by inhibitory links, services, (d) Unix simulator, and (e) var-

This architecture has been tested ious routines for testing the CAC-QUAD
extensively via computer simulations, hardware.
and has been demonstrated to exhibit a TDB. Transputer Debugger.
number of properties which are charac- This is the symbolic debugger
teristic of human speech processing. The which runs on the Sun 3, with the VME
model is highly robust in the face of noise B011 card. It is currently being ported to
and is able to use top-down (i.e., higher- the SPARC station. This has proven a
level) knowledge information to compen- very useful development tool for trans-
sate for degraded input. The model also puter applications.
treats coarticulatory variation as a
source of information, rather than a LOgical Systems C.
meaningless corruption of the signal. C cross compiler/assembler/link-

The early version of TRACE, how- er/loader running on Sun and ibm PC

ever, was very slow (because it was sim- platforms, generating code for transput-

ulated on serial hardware) and was im- er.
plemented for only a subset of phonemes The cross compiler itself, indud-
in English. In the current project, the al- ing UCSD extensions to support multi-
gorithm has been ported to a parallel plexed I/O, the B011 board (eventually
hardware environment, and has been ex- the SPARC board ais well).
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0/S services. requirements for TRACE. The most
• Minroute (transputer routing/ "taxed" resources will be available mem-

multiplexing code for I/O support). ory and available computational power.
UCSD developed routing code. Very use- We commonly run TRACE on a lexicon of
ful for debugging, and necessary for typ- 100 to 200 words, and 40 phonemes.
ical applications on multiple processors. The development of TRACE has

"• Memory management. been divided into three major subcompo-

"* Remote Procedure Call services nents, and we discuss these separately

to Unix host. below. In Section A we describe the pro-
cess the digitized speech signal is con-

• Interprocess and interprocessor verted into phoneme estimates. In this
communication. section we summarize the recording pro-
Simtrace. cess, speech database, acoustic process-

Stand alone simulator under ing, and neural network phoneme pro-
Unix. This code is for predicting behav- cessors. In Section B we describe theUixrof ThiE cod the i rasputre t bphatfo- second major subcomponent of TRACE,
ior of TRACE on the transputer platform which includes phoneme/word interac-
and experimenting with algorithmic tions and culminates in actual recogni-
the CAC-QUAD. tion of words. Finally, in Section C we de-

scribe the software interface with the
CAC-QUAD hardware tests. CAC-QUAD hardware platform.

"• T-800 processor test.

"* On-chip memory test. A. Front-end processing.
"* Off-chip memory test. I. Recording, analysis, and marking of
"• Shared memory test. speech database.

"* Link communications test. The success of any speech recogni-
"* Speed/performance test. tion scheme is closely tied to the size, ac-
"* Multi-processing test. curacy, and generality of the speech da-

tabase upon which it is trained and test-
ed. The in-house development of such
databases has historically been an im-
portant component of the speech recogni-
tion research effort. Over the lifetime of

IV: TRANSPUTER IMPLEMENTA- the present project, three different data-
TION OF TRACE bases have been employed:

0 The speaker-dependent MIBD1
Currently TRACE is able to pro- database was developed at UCSD for the

cess speech consisting of up to 40 differ- purpose of early testing and develop-
ent phonemes, and theoretically an infi- ment It contains 216 exemplars each
nite number of words. As long as a suit- of the stop consonants [b, d,, g, p, t, k] in
ably prepared lexicon exist, TRACE is consonant-vowel- consonant settings
able to be automatically reconfigured for (e.g., "bib", "did",...). The onset of each
any new lexicon. As the number of words phoneme was marked by hand with the
in a lexicon increase, so will the resource aid of special-purpose graphical analy-

-7-
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sis software also developed at UCSD for neme-estimation neural network. These
this project. transformations are intended both to

* The speaker-independent TIM- model (in a simplified manner) the re-
IT database was developed at Texas In- sponse of the cochlea in the human ear,
struments and MIT and became avail- and to minimize any systematic varia-
able midway through the project. it tions in the recorded sound across differ-

contains 10 sentences each for 630 ent recording sessions. In addition, they

speakers using a 5000 word vocabulary, serve to significantly reduce the amount
Phoneme onsets have been hand marked of data presented to the neural network.

for each of 62 different phonemes (yield- Similar transformations are employed in

ing over 160,000 exemplars in all). This a wide variety of contemporary neural-
database was useful for development, network-based speech recognition sys-

but it had too little data for any single tems.
speaker to support speaker-dependent The TRACE speech preprocessing
training, transforms the speech into a sequence of

* The speaker-dependent MBD2 "frames" with a 10-msec interval be-

database was developed at UCSD for the tween frames. Each frame ultimately

purpose of advanced testing and develop- consists of 16 parameters computed as

ment. It contains 120 random, five-word follows:
sentences constructed from the 100-word • A 20-msec excerpt of the digi-
Army Avionics vocabulary in Appendix tized speech is weighted by a Hamming
A. Phoneme onsets were marked by window, and its spectrum is computed
hand (as in the MBD1 database) for each via a 256-point Fast Fourier Transform
of 40 phonemes, resulting in 3126 sepa- (FFT).
rate exemplars. This is the database * The magnitude spectrum is col-
upon which all final results are based. lapsed into 15 logarithmically spaced

2. Identification of the phoneme inventory, frequency bands by combining adjacent

Based on the Army Avionics lexi- channels of the FFT. These 15 values

con and on testing experiences, 40 pho- are then converted to dB, relative to the

neme labels were ultimately selected for maximum value in that frame. (Hence,
use in this project. Of these, 37 corre- each frame has a 0 dB independent of all

spond directly to phonemes in the stan- other frames.)
dard "ARPABET", one label is for si- * A 16'th. parameter gives the to-
lence, one is for non-speech sounds, and tal power across the entire spectrum for
a final label is expressly set aside for the that frame. This value is converted to dB
"or" sound in words such as "four". A relative to a fixed reference.
complete list of all 40 phoneme labels is This has the effect of replacing the
given in Appendix B. 10,000 sample values originally associat-

3. Acoustic preprocessing. ed with a single second of speech with

The speech is initially digitized at 1,600 psychoacoustically- motivated pa-

a 10 KHz sample rate. A number of rameter values. All parameters in all

transformations are then performed to frames are then renormalized according
convert the sampled speech into a form to the following scheme:
more appropriate for input into the pho- * For each of the 16 parameters,
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the mean and standard deviation of has a single column of 3 units, corre-
that parameter is computed across all sponding to three different phonemes.
available speech frames in a given re- The distinctive feature of this net-
cording session. work is that two crucial constraints are

e Each parameter value is con- placed on the connections from units in
verted to a z-score by subtracting the one layer to units in the layer above. The
mean value for that parameter and di- first constraint is that units receive exci-
viding by the standard deviation for tation from only a fixed subset of the
that parameter. units in the layer below. For example

This renormalization has the de- each unit in the first column of Hidden
sirable effect of eliminating gross spec- Layer 1 receives input from every unit in
tral differences between recording ses- the first three columns of the Input Layer
sions (due, for example, to different mi- (48 units in all). Each unit in the second
crophones or microphone placements), column of Hidden Layer 1 receives input
but it has the UNDESIRable effect of re- from every unit in columns two through
quiring that such statistics be available four of the Input Layer (again, 48 units
in advance of any attempted speech rec- in all). This pattern continues for each
ognition. column. Hence, each unit in the right-

most column in Hidden Layer 1 receives
4. Neural network phoneme processors. input from every unit in the three right-

Time Delay Neural Networks most columns of the Input Layer (still 48

The phoneme estimation algo- units in all).

rithm is based on the Time Delay Neural This constraint is also applied to
Network (TDNN) pioneered by A. Waibel the connections from Hidden Layer 1 to
at Carnegie-Mellon University. The ba- Hidden Layer 2, except that each unit in
sic idea is illustrated in Figure 1. The the second hidden layer is allowed to col-
network consists of four layers of units, lect excitation over five consecutive col-
with the units in each layer organized umns in the first hidden layer. The re-
into columns. Each unit computes a sult of this arrangement is that each unit
weighted sum of inputs, passes this in Hidden Layer 1 receives exactly 48
number through a nonlinear function weighted inputs from the Input Layer,
(the "logistic" function), and sends out while each unit in Hidden Layer 2 re-
the result as its output. ceives exactly 40 weighted inputs from

The first layer (the Input Layer) Hidden Layer 1.

has 15 columns of 16 units each, corre- The second crucial constraint is
sponding to 15 successive frames of that each unit in a given row is required
speech with 16 parameters in each to have the same* set of weights as all
frame. These 240 units provide excita- other units in that row. This makes the
tion to the second layer (Hidden Layer 1) units 'time invariant.' It means that if
which has 13 columns of 8 units each. the pattern of excitations in the Input
These 104 units, in turn, provide excita- Layer is shifted one column to the left,
tion to the third layer (Hidden Layer 2) then the pattern of excitations in Hidden
which has 9 columns of 3 units each. Layer 1 (and, similarly, in Hidden Layer
Lastly, these 27 units provide excitation 2) will also be shifted one column to the
to the Output Layer, which (in this case) left.
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The output units are a special subsets of phonemes (e.g., "b" vs. "d" vs.
case. Each of the three output units re- "g"), and then to train yet another net-
ceives input from all nine units in the work to discriminate between phonetic
corresponding row of Hidden Layer 2. categories (e.g., voiced stops vs. unvoiced
Moreover, all nine units contribute stops). The input-to-hidden-layer
equally (i.e., all nine weights are the weights of these networks are then
same). The result is that the output brought together as the front end of a hy-
units essentially serve to integrate the brid network. These weights are kept
excitation across each of the correspond- fixed while the remaining weights in the
ing rows of the second hidden layer. hybric network are iteratively adjusted

To use this network as a phoneme to yield the best recognition performance
detector, successive frames of input ae for the entire set of phonemes. This re-

presented to the rightmost column of the quires considerably less training time for

Input Layer. Because of the time invari- the same ultimate performance.
ance built into the network, each new
frame has the effect of shifting all the ex- Pairwise-Discriminant Time Delay Neu-
citations in the network one column to ral Networks
the left. Whenever a sufficient portion of In practice, the standard TDNN
the past 15 input frames contains a pho- described above has proven vulnerable toneme represented by one of the output twokineds aoferos First thoen unrbletwen
units, that output unit will tend to be two kinds of errors. First, the between-highly excite ut u category discrimination task (e.g., stops.vs. fricatives) is often sufficiently diffi-

Obviously, the success of this net- cult that the hybrid approach proves im-
work in actual applications depends en- practical. Second, TDNN classifiers tend
tirely on the weights on the various con- to make "hard" decisions as opposed to
nections between units. In total, there "soft" ones. This means that the TDNN
are 384 different weights between the In- network usually activates a single out-
put Layer and Hidden Layer 1, and an- put strongly, independently of how cer-
other 120 different weights connecting tain the network is about the decision.
the two hidden Layers. These weights Thus, there is no way to know from look-
are all automatically and iteratively de- ing at the network outputs whether a
termined during a lengthy training second phoneme may have been nearly
phase via the back propagation learning as good a match as the phoneme chosen
algorithm. A cross-validation procedure by the network. The Pairwise-Discrimi-
is used to decide when learning is com- nant TDNN (PD-TDNN) (originally pro-
plete. posed by Takami and Sagayama at ATR

One other issue that arises with Laboratories in Japan) is a variant of the

networks of this type is how to most effi- TDNN which avoids these two problems.
ciently train the network to discriminate The PD-TDNN is a four-layer net-
not merely between three phonemes but work whose input and hidden layers are
between forty. It is possible to simply identical to the TDNN described above.
have forty output units and to train the The difference between the two is that
network as above, but a more attractive the PD-TDNN has a single output unit,
approach is to first train separate net- and the activation function of this output
works to discriminate between specific unit is a modified logistic function: an ad-
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ditional plateau is inserted so that an ing that the "d" output is always more ac-
output of 0.5 is as stable as an output of tive than any other in response to a "d").
0.0 or 1.0. (Whereas the logistic function In practice, both the TDNN and the PD-
looks like a smoothed step function, the TDNN's produce erroneous outputs for
modified logistic function looks like a five of the 25 presentations. The impor-
smoothed sequence of two steps.) Thus, tant distinction, though, is that the erro-
the PD-TDNN output unit is essentially neous outputs for the PD-TDNN's are
a tri-state logic unit. still fairly far to the right on the graph

With this modified output unit, (indicating a strong possibility that the
the PD-TDNN can be trained according correct answer is actually "d"). In con-
to the following rules: trast, the erroneous TDNN outputs are

clustered near the vertical axis, suggest-
If the input contains phoneme ing that there is little chance of the cor-

#1 (say, "1"), the output is 0.0. rect answer being "d".

• If the input contains phoneme The PD-TDNN approach also al-
#2 (say, "d"), the output is 1.0. lows resources to be focused explicitly on

* If the input contains neither the discrimination tasks that are most
phoneme #1 or #2, the output is 0.5. demanding. By allocating networks in

this fashion, we arrived at a set of 127The disadvantage of this approach separate PD-TDNN's which jointly dis-

is that a separate PD-TDNN is required criminate amongst 40 different phoneme

for every phoneme pair that is to be dis- labels.

criminated. For example, one PD-TDNN

discriminates between "b" and "d", a sep- 5. Testing and evaluation.
arate PD-TDNN discriminates between Comparisons of different speech
"b" and "g", yet another PD-TDNN dis- recognition algorithms are notoriously
criminates between '"b" and "p', and so difficult because small differences in da-
on. The total aggregated output for each tabases and testing paradigms can have
phoneme is determined by adding up the a significant effect on the measured per-
outputs of all PD-TDNN's whose target formance. In evaluating phoneme esti-
was 1.0 for that phoneme (and by adding mation algorithms, an additional issue is
[1.0 - the output] for all PD-TDNN's that their ultimate utility depends solely
whose target was 0.0 for that phoneme). on the extent to which they facilitate ac-

On the other hand, the advantage curate word recognition in an integrated
of this approach is that the aggregated system. Nevertheless, tests and compar-
outputs tend to represent much "softer" isons are an indispensable part of the de-
decisions than the TDNN outputs. This velopment process. Our most significant
can be seen in Figure 2 which compares findings can be summarized as follows.
the output of a TDNN to that of a group Eight separate TDNN sub-nets
of PD-TDNN's in response to 25 presen- were ultimately trained and evaluated
tations of the phoneme "d". The horizon- on the TIMIT speaker-independent data-
tal axis shows the output of the "d" unit, base. Each sub-net was specialized for a
while the vertical axis shows the output different category if phoneme (e.g.,
of the most active output unit other than voiced stops, unvoiced stops, voiced frica-
"d". Ideally, all the data points would lie tives, etc.), and phoneme-identification
to the right of the diagonal line (indicat- accuracy ranged from 60% for the vowels
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to 84% for the stops. These results were Phoneme layer. Phonemes receive
comparable to those obtained by other estimates from the PDNN layer reflect-
research groups for this database with ing input to the current cycle. Phonemes
similar approaches. However, the prob- also receive excitatory input from words
lem with this approach was that TDNN's in previous, future, and the current cy-
trained to discriminate *between* the cle. Phonemes receive inhibitory input
various categories achieved accuracies from other phonemes active in the cur-
ranging from only 52% to 84%. This led rent cycle.
to the development of the in-house, Phonemes provide inhibitory out-
speaker-dependent MBD2 database and put to other phonemes in the current cy-
to the rejection of the multiple sub-net cle as well as excitatory and inhibitory
approach. output to words which begin in the cur-

To establish a baseline perfor- rent cycle, and to words which might be
mance on the MBD2 database, a mono- active during this cycle (words which be-
lithic TDNN was trained to identify all gan in a previous cycle, but span into the
40 phonemes. This network achieved an current one).
accuracy of 52% under realistic test con- Phonemes are all modeled as be-
ditions (phonemes presented in all possi- ing 20ms, or one TRACE cycle, in dura-
ble time-alignments relative to the tion. Because the actual duration of a
TDNN). However, as discussed above, it given phoneme is almost certainly much
tended to strongly activate a single out- longer than this, the same phoneme will
put rather than partially activating sev- be reactivated for several consecutive cy-
eral. In contrast, a collection of 127 PD- cles.
TDNN's achieved an accuracy of only cles.
54% under the same testing conditions. Word Layer. Words receive excita-
More significantly, though, the PD- tory and inhibitory input from active
TDNN identified the correct phoneme as phonemes in any cycle for which the
one of its top three choices 80% of the word exist or spans, and inhibitory input
time whereas the TDNN included the from other words which are coexistent in
correct phoneme within its three most any cycle.
active outputs only 68% of the time. It is Words are modeled as being con-
likely that the PD-TDNN performance structed of variable length phonemes.
can still be significantly improved simply Each word in the lexicon is described by
by increasing the size of the MBD2 data- a template which was developed based
base, but the amount of this improve- on empirical study of digitized speech.
ment remains to be determined. The templates consist of a minimum on-

set time for each phoneme in the word,
and a maximum offset time. For exam-
ple, the word "seven" is represented by

B. Phoneme/Word Interactions the phonemes 's' 'E' v' 'E' 'n' in sequence.
The result of the front-end pro- The actual lexicon entry for this word

cessingjust described is a set of phoneme looks like this:
estimates for each cycle. These are fed sEvEn:
directly to the layer of phoneme proces- s 0.00 0.19
sors, which are in turn connected to word E 0.11 0.30
processors. v 0.21 0.33
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E 0.27 0.41 is) the algorithm was expected, and has
n 0.30 0.78 proven to be much better at dealing with

variable rates of speech. With the cur-
The numbers next to each pho- rent representation of words and pho-

neme represent the earliest onset time in nemes TRACE is perfectly happy to al-
seconds of the phoneme, and the latest low the same word or phoneme to be of a
offset (end time) in seconds for the pho- different length each time it is seen in
neme. For example the earliest we ex- the input stream. This has considerably
pect to see the first 'E' phoneme is about increased the performance of TRACE in
0.11 seconds after we detected the start terms of correct recognition. Unfortu-
of the word, and the longest we expect it nately this change in representation has
to last is 0.30 - 0.11 = 0.19 seconds. We led to about a 100 fold increase in the
see that the Y' phoneme is allowed to processing requirements for the algo-
start at 0.21 seconds after we detected rithm. Some part of this increase has
the start of the word, this is in the middle been reduced by various coding methods,
of the allowable time frame for the previ- but the time to process speech has been
ous `E' sound. This is how TRACE ac- considerably increased.
commodates variable rates. In effect
TRACE allows all possible durations for
all the phonemes in a given word. Of
course the word representations are C. Hardware platform.
based on a limited, though large, data set
so it is certainly possibl for some error which Tere were several desifromextemey sowor etreelyrapd wichwere taken into account in choos-
from extremely slow, or extremely rapid ing a suitable hardware platform for im-

speech.plementing the model:The duration problem. Earlier ver- * poessoreec

sion of TRACE represented the pho- * processor speed. The calcula-
nemes and words in a different way. Pre- tion of node activations involves floating-
viously phonemes were represented as point multiplies and adds, and so it was
having a specific duration, based on em- deemed important to select a processor
pirical study of phonemes in speech. with high-performance arithmetic capa-
Words' representations didn't include bilities.
any phoneme length information, only * support for parallelism. It was
which phonemes were present in a given anticipated that the greatest improve-
word. Experimentation with this repre- ment in performance would come from
sentation exposed some problems in rec- parallel operation. Therefore, we wanted
ognizing the same word spoken at two a processor which (a) simulated parallel
slightly different speeds, as is encoun- processing on-chip; and (b) was capable
tered in normal speech, even with the of functioning in a parallel mode with
same speaker. The degree of variability many other processors.
in the duration of words, and indeed the * communicafions support. Be-
phonemes within the words, proved to be cause the target architecture would in-
too difficult for the fixed length word/ volve a large number of processors (each
phoneme representations. supporting a large number of indepen-

With the variable length pho- dent processes), we realized that it would
nemes (variable within each word that be important to maximize communica-
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tion bandwidth. Furthermore, we want- nicate via shared memory. Finally, each
ed flexibility in how this bandwidth was transputer on a given Quad has serial
to be achieved. We envisioned a system link connections to one transputer on
in which communication bandwidth each of the other three Quads (leaving
might occur either directly (e.g., along a one serial link free).
bus or point-to- point links) or indirectly, The 10 board has a single T-800,
via shared memory. AID chip, 512K local memory, and 512K

• software compatibility with host. of shared memory, accessible by QuadO.
TRACE had been developed in C code on The T-800 on the 10 board uses one of its
conventional machines, and we antici- four serial links to communicate with ex-
pated continuing to develop the software ternal devices (and for downloading
in simulation form. We wanted the sim- code). This T-800 also collects digitized
ulation software to be easily portable to speech from the A/D, carries out feature
the target machine, and back again for extraction, and places the result in
debugging purposes. It was thus impor- shared memory. The shared memory
tant that the target processors be easily (with QuadO) is used both for booting the
integrated into a network in which the remaining quads and for transferring
simulation host (i.e., a VAX or Sun com- speech data to other processors.
puter) might participate in a transparent Shared memory on each board
fashion. can be controlled in one of two modes. In

These considerations led us to transparent mode, whichever transputer
chose the Inmos T-800 Transputer. The requests memory first gains access for
T-800 processor is a 32-bit CMOS micro- the duration of a single I/O operation.
computer. It has an integral 64-bit float- Other requests during this period are de-
ing point unit with 1.5 MFLOPS perfor- ferred (transputers are placed in wait
mance (at 10 MIPS). It supports 4K on- states until memory becomes available).
chip local memory, and can directly ad- When the 1/0 operation is complete, con-
dress 4GB total memory. There are four trol of the shared memory is automati-
serial links (running at selectable speeds cally shifted to the next transputer. In
of 5, 10, or 20 Mbitslsec) which provide controlled mode, a transputer may lock
for inter-processor communication. The the shared memory-, when this happens,
T-800 also has a hardware scheduler the controlling transputer blocks access
which provides for programming on-chip. from other transputers until it explicitly
There are implementations of several yields control.
high-level languages, including C. Figure 3 shows a simplified sche-

matic drawing of the system.
The current hardware configura- Functionally, TRACE is imple-

tion is organized around what we call mented in the following way. The 1O
Quad boards. In the current configura- board is responsible for the interface
tion, there are four Quad boards, plus a with the world. This includes download-
fifth 10 board. ing code, controlling AID conversion, and

Each Quad contains four T-800 communicating the results of TRACE's
transputers and 1MB of shared memory. processing to an external host/device.
Each T-800 also has 512K of local memo- The T-800 on the 10 board is responsible
ry. Transputers within a Quad commu- for running a monitor program which
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will supervise TRACE and detect faults grators. The second problem is that this
and errors. It also reports TRACE re- approach incurs an enormous communi-
sults to the host/external world. This T- cations overhead. Depending on the type
800 will also carry out initial acoustic/ of node, there may be anywhere from 100
phonetic processing on the speech, and to 1,000 node interconnects. Neither the
place the results in global memory which transputer nor any silicon-based technol-
is accessible to QuadO. ogy currently available allows this band-

Each of the Quad boards will run wdth.
the same code, but will be responsible for These considerations led us to de-
a subset of phoneme and word nodes. velop a hybrid architecture. By placing
Figure 4 shows the processes that will several transputers together on a board,
run on each of the four T-800s on any giv- and allowing for high-bandwidth com-
en Quad (the transputer here is labelled munication on a Quad via shared memo-
TPO). ry, we in effect create a super-transput-

In this example, TPO is responsi- er, with 16 communications links and an
ble for processing a subset of phonemes aggregate of 40 MIPS performance.
(shown here as k,l,m,...) and words (end- Each transputer on a Quad queries the
ing here in must). Data structures for shared memory for nodes-to-be-pro-
the entire set of phonemes and words are cessed and removes that node from the
maintained in shared memory (shown on pending queue (following the Linda
the left as a,b,c,...,zulu). Inputs for the scheme; Ahuja, Carriero, & Gelernter,
current TRACE are stored in cur_excita- 1986). The transputer then calculates
tion; these are sent to the TRACE code the effect that this nodes will have on
on each transputer, which then carries each of the other nodes in the entire net-
out the node interactions and updates. work. The result is stored temporarily in
The resulting new node excitations are the transputer's local memory. At the
placed back in shared memory in the conclusion of the current time slice, in-
new excitation structure. formation stored in the separate local

memories is then integrated into the
This design was motivated by the Quad's shared memory, and finally, with

desire to balance computational issues the information on other Quads. This
with communication requirements. In scheme, we believe, makes it possible to
the extreme, the computational perfor- achieve a balanced load while at the
mance would be maximized by allocat- se time minimzg communication
ing one node per transputer. This is the requirements over the serial links.
most natural mapping for a neural net-
work, and is similar in spirit to the ap-
proach taken in the Connection Ma- V. Graphics visualization soft-
chine, ware.

There are two problems with this.
The cost, of course, would be excessive;
and to some extent, it represents over- Because trace can produce a tre-
kill. Each T-800 offers about 10 MIPS mendous amount of useful information
performance, but the computational pro- about the state of the network, and all of
cessing carried out by each node is rela- it's nodes, every 20ms it was necessary to
tively simple; nodes are essentially inte- devise some tools for interpreting this in-
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formation. In order for a human to inter- network, but it has been essential to the
pret an asses the output from trace it is development of TRACE. While develop-
necessary to analyze an output for each ing and experimenting with the algo-
node (phoneme or word) on every cycle, rithm it has been necessary to continu-
and in turn analysis the same output for ously adjust TRACE's parameters
multiple cycles. If the network contains (weights for node connections, decay
250 nodes, and looks at 2 seconds of times, etc), in order to find a sensible set
speech (100 cycles) that would require of parameters to allow the recognizer to
the analysis of 25000 (250*100) data correctly operate.
points, just to determine the state of the Some work as been put toward de-
network (i.e. what has been recognized) veloping a "winner" algorithm. This al-
at the end of the current cycle. This anal- gorithm would automatically analyze all
ysis would have to be performed on every the node output on every cycle and notify
cycle up to the 100th (i.e. 2 seconds), the user when it believe a word has been
which would ultimately mean looking at recognized. Various means of doing this
2.5 million data points, just to determine have been experimented with, and we
the result after 2 seconds of speech have have met with some success, but this as-
been seen. pect hasn't been fully integrated with

Obviously analysing 2.5 million TRACE.
numbers in 2 seconds would not be a pos-
sible task for a human. We've develop a
visualization tool which runs under X
windows on a unix work station. This
tool presents a graphical picture of of the
state of the network for any given cycle,
and is able to record and replay the state
of the network for a large number of cy-
cles. We have coupled this tool with the
trace algorithm on the Unix environment
to produce a program called xtrace.
Xtrace allows a user to interactively,
graphically, run trace. The user is able
to alter various "tunable" parameters of
the network on the fly via a mouse, or
keyboard inputs. The tool allows the
user to filter or combine information
from all the nodes, at all times in the net-
work, and display a comprehensible pic-
ture of the state of the network at any
given time. This "state" very clearly
shows which words TRACE has recog-
nized at a given time.

Xtrace uses a tremendous amount
of memory and disk space and so is not a
suitable tool to be run on the transputer
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APPENDIX A: Small lexicon-1

[The alphabet: alpha, bravo, charlie, ... , zulu]

[The numbers: zero through twenty]

Thirty, forty, fifty, sixty, seventy, eighty, ninty, hundred, thousand

Point, first, second, third, last

O.&I.
A.&L.
S.2.
S.3.
air S.3.
T.O.C.
F.A.C.
N.C.S.
F.C.C.
F.S.O.
X.O.
F.S.E.
A.V.I.M.
J.A.A.T.
tac C.P.

disengage
execute
vicon
frequency
channel
command
divarty
base
medevac
tower
scout
niner
commander
support
brigade
battalion
company
clearance
authenticate

say again
give me
call sign
call up
look up
ground control
platoon leader
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APPENDIX B: Phoneme Inventory

ARPAbet TRACE Example in
symbol symbol word context

b b Bob
d d Dad
g g Gag
p p Pop
t t Tot
k k Kick
dx F baTTer

v v Very
z z Zoo
jh J Judge
f f Fief
8 s Sis
th T THief
ch C CHurch

1 1 Led
r r Red
w w Wet
y y Yet

n n Non
m m Mom

hh h Hay

iy i bEEt
ih I bit
eh E bEt
ae @ bAt
ah A bUtt
ax x thE
aa a cOt
uw u bOOt
uh U bOOk
er R biRd
or 4 fOR
el L bottLE
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ey e bAit
ay Y bIte
ow o bOAt
oy 0 bOy
aw W abOUt

sil - <silence>
<other>
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Figure 3
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